skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conti, Sergio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In materials that undergo martensitic phase transformation, macroscopic loading often leads to the creation and/or rearrangement of elastic domains. This paper considers an example involving a single-crystal slab made from two martensite variants. When the slab is made to bend, the two variants form a characteristic microstructure that we like to call “twinning with variable volume fraction.” Two 1996 papers by Chopra et al. explored this example using bars made from InTl, providing considerable detail about the microstructures they observed. Here we offer an energy-minimization-based model that is motivated by their account. It uses geometrically linear elasticity, and treats the phase boundaries as sharp interfaces. For simplicity, rather than model the experimental forces and boundary conditions exactly, we consider certain Dirichlet or Neumann boundary conditions whose effect is to require bending. This leads to certain nonlinear (and nonconvex) variational problems that represent the minimization of elastic plus surface energy (and the work done by the load, in the case of a Neumann boundary condition). Our results identify how the minimum value of each variational problem scales with respect to the surface energy density. The results are established by proving upper and lower bounds that scale the same way. The upper bounds are ansatz-based, providing full details about some (nearly) optimal microstructures. The lower bounds are ansatz-free, so they explain why no other arrangement of the two phases could be significantly better. 
    more » « less
  2. Ball, J. (Ed.)
    In materials that undergo martensitic phase transformation, distinct elastic phases often form layered microstructures — a phenomenon known as twinning. In some settings the volume fractions of the phases vary macroscopically; this has been seen, in particular, in experiments involving the bending of a bar. We study a two-dimensional (2D) model problem of this type, involving two geometrically nonlinear phases with a single rank-one connection. We adopt a variational perspective, focusing on the minimization of elastic plus surface energy. To get started, we show that twinning with variable volume fraction must occur when bending is imposed by a Dirichlet-type boundary condition. We then turn to paper’s main goal, which is to determine how the minimum energy scales with respect to the surface energy density and the transformation strain. Our analysis combines ansatz-based upper bounds with ansatz-free lower bounds. For the upper bounds we consider two very different candidates for the microstructure: one that involves self-similar refinement of its length scale near the boundary, and another based on piecewise-linear approximation with a single length scale. Our lower bounds adapt methods previously introduced by Chan and Conti to address a problem involving twinning with constant volume fraction. The energy minimization problem considered in this paper is not intended to model twinning with variable volume fraction involving two martensite variants; rather, it provides a convenient starting point for the development of a mathematical toolkit for the study of twinning with variable volume fraction. 
    more » « less